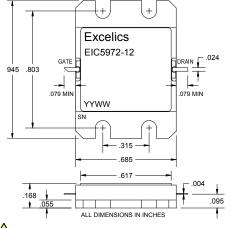


UPDATED 11/10/2006


5.90-7.20 GHz 12-Watt Internally Matched Power FET

FEATURES

- 5.90-7.20GHz Bandwidth
- Input/Output Impedance Matched to 50 Ohms
- +41.5 dBm Output Power at 1dB Compression

ELECTRICAL CHARACTERISTICS ($T_a = 25^{\circ}C$)

- 9.0 dB Power Gain at 1dB Compression
- 36% Power Added Efficiency
- -46 dBc IM3 at Pout = 30.5 dBm SCL
- Hermetic Metal Flange Package
- 100% Tested for DC, RF, and R_{TH}

Caution! ESD sensitive device.

EIC5972-12

SYMBOL	PARAMETERS/TEST CONDITION	IS ¹ MIN	ТҮР	МАХ	UNITS
P _{1dB}	Output Power at 1dB Compression $f = 5.90$ $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 3200 \text{ mA}$	-7.20GHz 40.5	41.5		dBm
G _{1dB}	Gain at 1dB Compression $f = 5.90$ $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 3200 \text{ mA}$	-7.20GHz 8.0	9.0		dB
∆G	Gain Flatness f = 5.90 V _{DS} = 10 V, I _{DSQ} ≈ 3200mA f = 5.90	-7.20GHz		±0.8	dB
PAE	Power Added Efficiency at 1dB Compression $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 3200 \text{ mA} \qquad f = 5.90$	0-7.20GHz	36		%
Id _{1dB}	Drain Current at 1dB Compression f = 5.90)-7.20GHz	3400	3800	mA
IM3	Output 3rd Order Intermodulation Distortion $\Delta f = 10 \text{ MHz } 2\text{-Tone Test}$; Pout = 30.5 dBm S.C. $V_{DS} = 10 \text{ V}$, $I_{DSQ} \approx 65\%$ IDSS $f = 7.20$		-46		dBc
I _{DSS}	Saturated Drain Current $V_{DS} = 3 V, V_{GS} = 0$	V	6000	7500	mA
V _P	Pinch-off Voltage $V_{DS} = 3 V, I_{DS} = 60$	mA	-2.5	-4.0	V
R _{TH}	Thermal Resistance ³		2.5	3.0	°C/W
Note: 1) T	ested with 50 Obm gate resistor $2)$ S C L = Single C	arrier Lovel 3) Over	all Rth depends	on case mour	ting

Note: 1) Tested with 50 Ohm gate resistor. 2) S.C.L

2) S.C.L. = Single Carrier Level. 3) Ove

14

3) Overall Rth depends on case mounting.

MAXIMUM RATING AT 25 °C^{1,2}

SYMBOLS	PARAMETERS	ABSOLUTE	CONTINUOUS	
Vds	Drain-Source Voltage	15	10V	
Vgs	Gate-Source Voltage	-5	-4V	
lgsf	Forward Gate Current	129.6mA	43.2mA	
lgsr	Reverse Gate Current	-21.6mA	-7.2mA	
Pin	Input Power	40.5dBm	@ 3dB Compression	
Tch	Channel Temperature	175 °C	175 °C	
Tstg	Storage Temperature	-65 to +175 °C	-65 to +175 °C	
Pt	Total Power Dissipation	50W	50W	

Note: 1. Exceeding any of the above ratings may result in permanent damage.

2. Exceeding any of the above ratings may reduce MTTF below design goals.

Specifications are subject to change without notice.

Excelics Semiconductor, Inc. 310 De Guigne Drive, Sunnyvale, CA 94085 Phone: 408-737-1711 Fax: 408-737-1868 Web: <u>www.excelics.com</u>

EIC5972-12

UPDATED 11/10/2006

5.90-7.20 GHz 12-Watt Internally Matched Power FET

DISCLAIMER

EXCELICS SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. EXCELICS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

EXCELICS SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF EXCELICS SEMICONDUCTOR, INC. AS HERE IN:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness